14 Special Functions

Definition 1 (exponential function). The exponential function is defined by

$$
\begin{aligned}
& \exp : \mathbb{R} \rightarrow \mathbb{R} \\
& \exp (x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
\end{aligned}
$$

Theorem 2. The exponential function has the following properties.
(i) \exp is continuous on \mathbb{R};
(ii) $\exp (x)>0$ for all $x \in \mathbb{R}$;
(iii) for all $x, y \in \mathbb{R}: \exp (x+y)=\exp (x) \cdot \exp (y)$;
(iv) \exp is indefinitely differentiable and $\exp ^{\prime}=\exp$;
(v) exp is strictly increasing on \mathbb{R};
(vi) $\lim _{x \rightarrow-\infty} \exp (x)=0$ and $\lim _{x \rightarrow \infty} \exp (x)=\infty$;
(vii) $\exp : \mathbb{R} \rightarrow(0, \infty)$ is bijective;
(viii) $\exp (1)=e$ and $\exp \left(\frac{n}{m}\right)=e^{n / m}$ for $n, m \in \mathbb{Z}$ and $m \neq 0$.

Definition 3. For $x \in \mathbb{R}$ we define $e^{x}=\exp (x)$.
Definition 4 (natural logarithm). The (natural) logarithm $\ln :(0, \infty) \rightarrow \mathbb{R}$ is the inverse function of exp.

Theorem 5. The natural logarithm has the following properties.
(i) \ln is continuous on $(0, \infty)$;
(ii) $\ln (x)<0$ for $x \in(0,1), \ln (1)=0$ and $\ln (x)>0$ for $x \in(1, \infty)$;
(iii) for all $x, y \in(0, \infty)$: $\ln (x y)=\ln (x)+\ln (y)$;
(iv) \ln is differentiable with $\ln ^{\prime}(x)=\frac{1}{x}$;
(v) \ln is strictly increasing on $(0, \infty)$;
(vi) $\lim _{x \rightarrow 0} \ln (x)=-\infty$ and $\lim _{x \rightarrow \infty} \ln (x)=\infty$;
(vii) $\ln :(0, \infty) \rightarrow \mathbb{R}$ is bijective.

Definition 6 (arbitrary powers). For $a, x \in \mathbb{R}$ with $a>0$ we define $a^{x}=e^{x \ln (a)}$.
Theorem 7. The function $f(x)=a^{x}$ has the following properties.
(i) $f: \mathbb{R} \rightarrow(0, \infty)$ is bijective;
(ii) for all $x, y \in \mathbb{R}: f(x+y)=a^{x+y}=a^{x} a^{y}=f(x) f(y)$;
(iii) for all $x, y \in \mathbb{R}: f(x y)=a^{x y}=\left(a^{x}\right)^{y}=f(x)^{y}$;
(iv) f is differentiable with $f^{\prime}(x)=f(x) \ln (x)$.

Definition 8 (arbitrary logarithm). The inverse function of $f(x)=a^{x}$ is called base a logarithm, denoted by $\log _{a}$.

Theorem 9. The base a logarithm can be computed as

$$
\log _{a}(x)=\frac{\ln (x)}{\ln (a)}
$$

Theorem 10. The base a logarithm is differentiable with

$$
\left(\log _{a}(x)\right)^{\prime}=\frac{1}{x \ln (a)}
$$

Important functions

$f(x)$	$\sum a_{k} x^{k}$	$f(x)$	$\sum a_{k} x^{k}$
$\exp x$	$\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$	$\ln (1+x)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k},\|x\| \leq 1, x \neq-1$
$\cos x$	$\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$	$\cosh x$	$\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}$
$\sin x$	$\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$	$\sinh x$	$\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$

